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Abstract. The processes responsible for methane (CH4) emissions from boreal wetlands are complex, and hence their model

representation is complicated by a large number of parameters and parameter uncertainties. The arctic-enabled dynamic global

vegetation model LPJ-GUESS is one such model that allows quantification and understanding of the natural wetland CH4

fluxes at various scales ranging from local to regional and global, but with several uncertainties. The model contains detailed

descriptions of CH4 production, oxidation, and transport controlled by several process parameters.5

Complexities in the underlying environmental processes, warming-driven alternative paths of meteorological phenomena,

and changes in hydrological and vegetation conditions are highlight the need for a calibrated and optimised version of LPJ-

GUESS. In this study we formulated the parameter calibration as a Bayesian problem, using knowledge of reasonable pa-

rameters values as priors. We then used an adaptive Metropolis Hastings (MH) based Markov Chain Monte Carlo (MCMC)

algorithm to improve predictions of CH4 emission by LPJ-GUESS and to quantify uncertainties. Application of this method10

on uncertain parameters allows greater search of their posterior distribution, leading to a more complete characterisation of the

posterior distribution with reduced risk of sample impoverishment that can occur when using other optimisation methods. For

assimilation, the analysis used flux measurement data gathered during the period 2005 to 2014 from the Siikaneva wetlands

in southern Finland with an estimation of measurement uncertainties. The data are used to constrain the processes behind the

CH4 dynamics, and the posterior covariance structures are used to explain how the parameters and the processes are related.15

To further support the conclusions, the CH4 flux and the other component fluxes associated with the flux are examined.

The results demonstrate the robustness of MCMC methods to quantitatively assess the interrelationship between objective

function choices, parameter identifiability, and data support. As a part of this work, knowledge about how the CH4 data can

constrain the parameters and processes is derived. Though the optimisation is performed based on a single site’s flux data from

Siikaneva, the algorithm is useful for larger-scale multi-site studies for more robust calibration of LPJ-GUESS and similar20

models, and the results can highlight where model improvements are needed.
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1 Introduction

CH4 is the second most important long-lived greenhouse gas after carbon dioxide (CO2) (Ciais et al. (2013); Kirschke et al.

(2013)). It has been reported that the global atmospheric CH4 concentration has been growing since the pre-industrial time.

In 2021 it reached a value of 1908 parts per billion (ppb), nearly 2.62 times greater than its estimated value in 1750 (Dlugo-25

kencky, 2021). This increase in the atmospheric concentration of CH4 is responsible for around 16.5 % of the total effective

radiative forcing (in W m−2) of the well-mixed greenhouse gases (IPCC AR6: Forster et al. (2021)). Despite its relatively

shorter turnover time of less than ten years in the troposphere, CH4 has a much stronger infrared radiation absorption capacity

compared to CO2 (Prather et al., 2012).

Among the biogenic sources, wetlands contribute around 19-33% of current global terrestrial CH4 emissions and are the30

largest and the most uncertain (Kirschke et al. (2013); Saunois et al. (2020); Bousquet et al. (2006)). Wetlands occupy around

3.8% of the Earth’s land surface and are mainly located in high latitude regions. There is approximately 455 Pg of carbon stored

in boreal and subarctic wetland peat/histosols which is accumulated by absorbing atmospheric CO2 by plants as part of their

photosynthesis (Gorham, 1991). Under long-term anaerobic soil situations, this carbon will be metabolised by the anaerobic

microorganisms called methanogens and will eventually be emitted back as CH4 to the atmosphere (Aurela et al., 2009).35

In the future, climate change may cause a positive feedback on emissions from wetlands CH4 due to a warmer and wetter

climate (Johansson et al. (2006); Bridgham et al. (2008)). According to Zhang et al. (2017) at the end of the twenty-first

century, 38-56% of the CH4 production from the wetlands would be climate change induced. It is also expected to have

increased uncertainty in CH4 emission from boreal wetlands (Christensen et al., 2007) partly due to expected spatio-temporal

changes in wetland extent (Saunois et al., 2016). Considering the fragility of boreal wetlands and the possibility that they fail40

to maintain their stability in a changing environment (Jacob et al., 2007), one way to quantify their carbon budget is to model

their to model their carbon dynamics, including their CH4 emission. Realistic and optimised process-based vegetation models

can be used to reach a more precise estimation of emission variability and trends. However, representation of the complex

biogeochemical processes, including soil carbon turnover, vegetation dynamics, hydrology, soil thermal dynamics, and defining

wetland boundaries are complex, so, estimating the contribution from multiple pathways for CH4 production, consumption,45

and release complicates wetlands CH4 modelling (Melton et al. (2013); Wania et al. (2010, 2013); Susiluoto et al. (2018)), thus,

different models represent these biogeochemical and biophysical processes differently with varying degrees of complexity.

The Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS) (Smith et al., 2014) is one of a few available process-

based dynamic global vegetation model (DGVM) that simulates local to global vegetation dynamics and soil biogeochemistry

(Smith (2001); Sitch et al. (2003)). Taking the information about the climate and concentration of CO2 in the atmosphere,50

it predicts the structural, compositional, and functional properties of the native ecosystems of major climate zones of the

Earth. Considering the complexity of LPJ-GUESS with its large number of uncertain process parameters the model requires

a mathematically robust framework for parameter optimisation (Wramneby et al., 2008). Data assimilation using Bayesian

statistics can be seen as a way of combining observations with prior information (i.e. model process formulation and prior

model parameter values) to derive posterior parameter and emission estimates (Susiluoto et al. (2018); Ghil and Malanotte-55
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Rizzoli (1991); Dee (2005); Carrassi et al. (2018)). The Markov Chain Monte Carlo (MCMC) (Metropolis et al., 1953b) is

a powerful and convenient Bayesian framework (Tarantola, 1987) for data assimilation as it can combine prior information

with observations to sample from the posterior distributions in complex models. This study has developed an Adaptive MCMC

Metropolis Hasting (AMCMC-MH) framework (Hastings (1970b); Tarantola (1987)) with Rao-Blackwellised adaptation of

the multivariate Gaussian random walk proposals (Andrieu and Thoms, 2008). The algorithm minimises the model-data misfit,60

i.e. a cost function, by sampling from the probability density function (PDF) of the posterior parameters. The adaptation allows

the algorithm to learn the shape of the posterior, improving sampling efficiency. The main objective of this paper is to evaluate

the capabilities and limitations of the AMCMC-MH framework to optimise CH4 wetland emissions simulated by the LPJ-

GUESS model by analysing the posterior parameter distributions, the parameter correlations and the processes they control.

Considering the complexity of LPJ-GUESS with its large number of uncertain process parameters (Wramneby et al. (2008);65

Wania et al. (2010)), there is a need for a mathematically robust framework for parameter optimisation.

2 Data and Methodology

2.1 Siikaneva wetland and measurements

The Siikaneva wetland is located at 61◦ 49◦N, 24◦ 11◦E, at 160 m a.s.l and is the second-largest un-drained wetland complex

in Southern Finland (Ahti et al. (1968); Rinne et al. (2007)). This boreal wetland complex has an area of 12 km2, including70

minerotrophic and ombrotrophic sites with over 6 meters of peat deposition under the surface (Mathijssen et al. (2016); Aurela

et al. (2007); Rinne et al. (2007)). The estimated average annual total precipitation is about 707 mm. The average temperature

for January and July are approximately -7.2◦C. and 17.1◦C, respectively. The estimated mean annual temperature is around

4.2◦C (Korrensalo et al., 2018). The total annual CH4 emissions from the Siikaneva wetland varies between 6.0 gCm−2 and

14 gCm−2 and net CO2 fluxes vary between -96 gCm−2 and 27 gCm−2 (Rinne et al., 2018).75

Daily measurement of incoming short wave radiation, precipitation, and air temperature collected at the wetland are used

as input to the model. Since the meteorological data measured directly at the Siikaneva wetland have several significant gaps,

which made them unsuitable as inputs to the model, we used precipitation and temperature data collected from a nearby station

called Juupajoki-Hyytiälä (around 5.5 kilometres away from Siikaneva, open data by Finnish Meteorological Institute (FMI):

https://en.ilmatieteenlaitos.fi/download-observations) and the short wave radiation data collected from the Hyytiälä weather80

station (SMEAR II station around 6 kilometres away from Siikaneva, https://smear.avaa.csc.fi/download (Hari et al., 2013) ).

Given the short distances between these sites and Siikaneva, we assumed that the meteorological variables are representative

of Siikaneva. To verify the assumption, we have analysed the available data from Siikaneva and the datasets collected from

Juupajoki and Hyytiälä sites. The air temperature and precipitation of the Juupajoki and the Siikaneva showed a Pearson cor-

relation of 0.998 and 0.706, respectively . Short wave radiation data collected at Hyytiälä and Siikaneva showed a correlation85

of 0.98. Still, there were some minor gaps in the short wave data collected at Hyytiälä, which were therefor gap-filled using the

available data collected at Siikaneva for the corresponding periods. Additional inputs to the model are atmospheric CO2 con-
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centration as described by McGuire et al. (2001) and updated until recent years using data from the NOAA Global Monitoring

Laboratory (https://gml.noaa.gov/ccgg/trends).

2.2 CH4 model description in LPJ-GUESS90

LPJ-GUESS contains a number of well-defined modules to represent the related ecosystem processes with a distinct spatial

and/or temporal signature. Compared to version 4 of the model described by Smith et al. (2014), version 4.1 which we used

for this study, has more detailed representations of plant functional types (PFTs) characteristics and processes in wetlands

(Gustafson (2022)). This include improved descriptions of peatland-specific PFTs, peatland hydrology, soil temperature es-

timation, and CH4 emissions. These process descriptions and developments (with some minor modification) were adopted95

from the wetlands and CH4 module in the LPJ-WHyMe model (Wania et al. (2009a, b, 2010)), and are described in detail in

McGuire et al. (2012). Brief descriptions of the important wetland processes in LPJ-GUESS version 4.1 are given below, for

more detailed description see Gustafson (2022).

2.2.1 Active peat column and properties

The active wetlands peat in the LPJ-GUESS is represented by a 1.5 m deep column further divided into 15 layers of 0.1 m100

thickness each (see Figure 1 ). The uppermost three layers comprise the acrotelm, within which the water table can vary. The

underlying 12 layers of catotelm are are saturated with water permanently Wania et al. (2009a); Gustafson (2022).

The acrotelm layers have a porosity (poracro) of 0.98, while the catotelm layers, assumed to be made of older, denser peat,

have a porosity (porcato) of 0.92. Each layer consists of constant proportions of peat and varying proportions of water (Fwater),

ice (Fice), and air (Fair), all with distinct thermal characteristics given in Table 1. The active column is covered by a maximum105

of five snow layers, with a depth that can reach 10 m water equivalent, and five extra padding layers that extend to a depth of

48 m. These layers are thermally active, but, hydrologically inactive, with the bottom three layers having thermal properties of

bedrock (Table 1).

2.2.2 Peat temperature

Temperature in each active peat layer is calculated daily by solving the heat diffusion equation;110

∂T

∂t
=

∂

∂x

(
D(z, t)

∂T

∂z

)
(1)

where T represents the temperature of the soil at a a specific depth z (m) and time t, while D(z,t) (m2s−1) denotes the

thermal diffusivity at depth z and time t, defined as:

D(z, t) =
K(z, t)
C(z, t)

(2)
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Table 1. Heat capacities (106Jm−3K−1) and thermal conductivities (Wm−1K−1) of the soil layer components. The values are originally

adopted from, Wania et al. (2009a, b); Bonan et al. (2002); Granberg et al. (1999); and Chadburn et al. (2015).

Component Heat capacity Thermal conductivity

Peat 0.58 0.06

Water 4.18 0.57

Ice 1.94 2.2

Air 0.0012 0.025

Bedrock 2.1 8.6

where K(z,t) (W m−1K−1) represents the thermal conductivity, and C(z,t) (Jm−3K−1) represents the soil layer component’s115

heat capacity (Table 1), each at a depth z and time t, more details can be seen in Wania et al. (2009a, b).

Water plays a major role in the wetland’s soil temperature because of the dynamics of latent heat during its phase change

(Wania et al. (2009a, b)). When temperature changes over time and depth, T(z,t) in the soil, the values of Fwater and Fair also

change due to phase change, with a similar spatial (0.1 m) and temporal (1 day) resolution.

The calculation for freezing and thawing of water in version 4.1 of LPJ-GUESS is different from that described in Wania120

et al. (2010). It calculates them below the wilting point and freezing of the water stored above the wilting point can occur only

after all the water below the wilting point has frozen. Likewise, melting of the ice stored above the wilting point can only take

place once all the ice below the wilting point has melted.

2.2.3 Peat hydrology

The hydrology of acrotelm layers follow the description of Wania et al. (2009a, b) originally following Granberg et al. (1999).125

As mentioned above, it is assumed that the catotelm layers remain saturated permanently with no inflow or outflow, but to

maintain saturation, water is added to these layers on a daily basis, if necessary. This is because PFTs such as graminoid

species can absorb water from the catotelm layers via their roots.

Thus, the model updates only the daily water content in acrotelm, and predicts the water table depth ((wtd)), where 0 <=

(wtd) <= 300 mm, i.e. (wtd) is positive below the surface, and standing water is not permitted. Each day the change in total130

volume of water in acrotelm (V) is calculated as:

∆V = runon/off + rainmelt− evap− aetacro− runoffacr0 (3)

where evap represents the amount of water that gets evaporate from the bare peat soil fraction, rainmelt represents the daily135

amount of water input to the patch as rainfall and/or snowmelt, runoffacro is the runoff from the acrotelm and aetacro is the
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transpiration from the acrotelm based on the root distributions in the acrotelm layers. The user has the option to include a site-

specific runon/off, which enables them to mimic local conditions by either adding (runon/off > 0 m) or removing (runon/off

< 0 m) water from the acrotelm, if they are known.

Once the total volume of water is determined, the water table depth ((wtd)) in the acrotelm is assumed to be linear in the first140

top interval (0-0.1 m) and constant below this depth and up to the lower limit of the acrotelm, i.e. 0.1-0.3 m (Granberg et al.,

1999). Hence if 0.1 m >= (wtd) >= 0 the (wtd) is calculated as:

wtd=

√
3(poracro× 0.3−V )

2× az
(4)

145

And for (wtd) > 0.1 m the (wtd) is calculated as:

wtd=
1.5× (poracro× 0.3−V )

poracro− fsurfmin
(5)

where fsurfmin = 0.00025 is the surface minimum fractional water content in m3/m3, poracro is the porosity in the acrotelm

and az = poracro - fsurfmin/0.1 is the gradient in the uppermost 0.1 m suction interval, The water profile of soil θ(z) in each

layer of 0.1 m is calculated as,150

θ(z) =min(poracro, θsurf + (poracro-θsurf )×
(

z
wtd

)2) (6)

where the θsurf , the surface water content is calculated as,

θsurf =max(fsurfmin,poracro−wtd× az) (7)

Once θ(z) in each 0.01 m layer is known, the average of ten 0.01 m layers is used to calculate the fractional water content

(Fwater) in each of the three 0.1 m sublayers of the acrotelm, which will then used for calculating the thermal properties, i.e.155

for the soil temperature calculations described above.

2.2.4 Peatland PFTs

Table 2 provides the properties of four types of PFTs that can exist on peatland stands. The descriptions of Sphagnum mosses

and C3 graminoids in model is taken from Wania et al. (2009b). The model includes a generic herbaceous cushion lichen moss

PFT (pCLM), low deciduous and evergreen shrubs (pLSE and pLSS, respectively). Both of these PFTs are parameterized to160

favor dry peatlands that have low water tables.
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Figure 1. Schematic representation of the CH4 model in LPJ-GUESS coupled with the CENTURY soil organic model. Carbon for

methanogens is allocated to soil layers based on the distribution of roots in each layer. The root density decreases from top to bottom of

peat. The assigned carbon in each layer is divided into CH4 and CO2. Oxygen (O2) either directly diffuses or is transported through plants.

The availability of O2 determines the amount of CH4 in the soil as it oxidises a fraction of CH4. Similarly CH4 also can either directly diffuse

or be transported to the atmosphere in bubbles, or it can be transported by vascular plants. The equilibrium between gaseous bubbles of

CH4 and dissolved CH4 in water is controlled by the maximum solubility of CH4. Any CH4 that exists in gaseous form will escape to the

atmosphere via ebullition.

The leaf area index (LAI) of nearby trees or shrubs is a limiting factor on PFTs. The model sets a maximum LAI limit of 2

m2m−2 for mosses and graminoids, and exceeding this limit leads to increased shade mortality.

Similarly a daily desiccation stress factor [0,1] and an inundation stress factor are also introduced in the model. A desiccation

stress factor of 1 indicates that there is no stress, whereas a value of 0 signifies complete suspension of photosynthetic activity165

for that day (applies only to mosses and graminoids). Inundation stress factor is implemented to control assimilation when the
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Table 2. Important parameter values used for defining Wetland PFTs. Here the WTDinun (mm) is the maximum (wtd) threshold, and

inunddays (days) that are the number of days wetland PFTs can tolerate inundated conditions.

PFT WTDinun inunddays Aerenchyma Photosynthesis stress due to lower (wtd)

pLSE, pLSS 250 5 No N/A

Sphagnum moss 50 15 No 0.3

C3 graminoids N/A N/A Yes 0.0

pCLM 200 10 No N/A

rooting zone experiences anoxia. The model restricts PFTs with a maximum (wtd) threshold and the number of inundated days

(inunddays) they can tolerate before assimilation (Table 2).

2.2.5 SOM dynamics and daily decay rates

The Soil organic matter (SOM) scheme in the LPJ-GUESS is adopted from the CENTURY model (Parton (1996); Smith170

et al. (2014)) with eleven distinct pools of different carbon : nitrogen (C : N) stoichiometry and base decay rates (Figure

1). The decomposition rates in the acrotelm, which is often wet and sometimes saturated, are slow. In the catotelm, where

conditions are permanently saturated and anaerobic, decomposition rates are particularly slow (Frolking et al. (2001, 2010)).

The decomposition rate for wetlands is computed daily for each pool using the following equation:

dCj

dt
=−kj,maxf(T )f(W )f(S).Cj (8)175

where Cj is the carbon content in pool j, kj,max is maximum decay rate, f(Tsoil), f(W) (from here on-wards called Rmoist)

and f(S) are dimensionless scalars between 0− 1 related to soil temperature, soil moisture and soil fractional silt plus clay

content (S) respectively. Considering the negligible soil fractional silt plus clay content in peat (S = 0), f(S) = 1.

From the parameter sensitivity test conducted by Wania et al. (2010), the value of Rmoist in LPJ-GUESS is adopted as 0.4

for carbon in the acrotelm. After the acrotelm soil carbon is fully established, which involves a peat layer 0.3 m deep with a180

carbon density of 25 kg C m−3, corresponding to a total soil carbon amount of 7.5 kg C m−2 across all pools, the value of

Rmoist will be reduced from the weighted average 0.4 to 0.025, hence in anaerobic catotelm conditions the moisture response

Rmoistanaerobic = 0.025; following Ise et al. (2008) and Frolking et al. (2001, 2010).

2.3 CH4 dynamics in high-latitude wetland stands (above 40◦ latitude)

The decomposed organic carbon in each day (explained in Section 2.2.5) is distributed vertically in different peat soil layers185

weighted by an assumed static root distribution, exponentially declining from the surface to the deeper layers, see Equation 9.

In high-latitude wetlands, this carbon pool is considered as ’potential carbon pool’ for methanogenic archaea, and is the basic

concept behind the CH4 model in LPJ-GUESS. The total available carbon is decomposed into two components, CO2 and CH4

8

https://doi.org/10.5194/gmd-2022-302
Preprint. Discussion started: 19 April 2023
c© Author(s) 2023. CC BY 4.0 License.



depending on the availability of O2 in the soil. The dissolved CH4 concentration and the gaseous CH4 fraction are calculated

based on the estimated CH4 content in each layer. A portion of the estimated CH4 is oxidised by the soil O2 and the remaining190

is transported to the atmosphere by either diffusion, ebullition, or plant-mediated transport. Apart from being the key factor

in estimating the ’potential carbon pool’, root biomass in each soil layer also plays a role in the transport of O2 and CH4 into

and out of each layer is mediated by plants. From different studies of various wetland PFTs Wania et al. (2010) observed an

exponential decrease of root biomass with depth proportional to the degree of anoxia, which is expressed by the following

equation, also used in LPJ-GUESS;195

froot = Croote
z/λroot (9)

where froot is the fraction of root biomass at a certain depth z, λroot = 0.2517 m is the decay length and Croot = 0.025 is a

normalisation constant. This distribution ensures that approximately 60% of the roots are distributed within the acrotelm, and

the root fraction in the lowest soil layer is adjusted to achieve a total root distribution of 1 across all 15 soil layers.

200

2.3.1 CH4 production

Due to its wide ranges, the CH4/CO2 ratio from decomposition is a challenging task to predict. For example, Segers (1998)

observed a high variation in the molar ratio of CH4 to CO2 production between 0.001 to 1.7 in anaerobic conditions. Hence it

is taken in the model as an adjustable parameter weighted by the degree of anoxia α, determined as α = 1-(Fair+fair), where

Fair is the fraction of air in the soil layers and fair is the fraction of air in peat (Wania et al., 2009a) (see the Section 2.2.1 for205

details).

The production of CH4 in each day in each layer is determined as,

CH4prod = α(z)× froot(z)×CH4/CO2×Rh (10)

where α(z) is the degree of anoxia at depth z, froot(z) is the fraction of root in the peat at depth z, CH4/CO2 =0.085 (in the

model), is the tuning parameter for the CH4 to CO2 production ratio and Rh is the daily heterotrophic respiration. Note that the210

model is set to CH4prod = 0 when Fwater<0.1, assuring zero CH4 production in frozen and/or dry soils, i.e, the model assume

there is no water when the water is frozen, hence Fwater is 0.

2.3.2 CH4 oxidation

The CH4 fraction that is oxidised depends on the availability of O2 (represented by the parameter foxid= 0.5 in the model) in

the soil. A part of the O2 transported to the soil will be consumed by the plant roots and non-methanotrophic microorganisms.215

The remaining part is then used to oxidise CH4. The oxidised CH4 is added to the CO2 pool, and the remainder stays in the

CH4 pool and will get transported at each time step.

9
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2.3.3 Total CH4 flux

Diffusion, ebullition and plant-mediated transport are the three pathways through which CH4 is transported to the atmosphere.

The total CH4 flux from high-latitude wetland patches in the model is represented as,220

FCH4 = CH4diff + CH4plant + CH4ebul (11)

where CH4diff is the CH4 flux component from diffusion, CH4plant is the CH4 flux component from plant-mediated transport

and CH4ebul is the CH4 flux component from ebullition. Since the daily CH4 production in each layer is dependent on Rh

(Equation 10), FCH4 is subtracted from Rh before saving it. Any CO2 generated, whether from heterotrophic respiration or

CH4 oxidation, is released into the atmosphere.225

Diffusion

The fractions of CH4, CO2 and O2 that are transported to the atmosphere and from the atmosphere through diffusion are

calculated by solving the gas diffusion equation within the peat layers using a Crank-Nicolson numerical scheme with a time

step of 15 minutes. The molecular diffusivities of these gases in soil depend on temperature, soil porosity and the water and air

contents in the soil. Diffusivity in water is derived by fitting a quadratic curve to observed diffusivities at different temperatures230

as described in Broecker and Peng (1974); diffusivity in the air and its temperature dependency is derived from the values taken

from Lerman et al. (1979), and diffusivity in soil and its temperature dependency is estimated from the Millington and Quirk

model described in Millington and Quirk (1961). A detailed description can be seen in Wania et al. (2010).

At the water-air surface the gas diffusivities changes by minimum four orders of magnitude, hence at the water-air boundary,

the flux is calculated by the following equation,235

J =−ψ(Csurf −Ceq) (12)

where Csurf is the surface water gas concentration, and Ceq is the concentration of gas in equilibrium with the atmospheric

partial pressure, estimated using Henry’s law. ψ, the gas exchange coefficient, also called piston velocity, is usually difficult to

estimate for different gases. In this case, the piston velocities of CH4, CO2 and O2 are calculated by relating them to the known

piston velocity of SF6 by the following equation,240

ψ∗= ψ600(
Sc∗
600

)n (13)

where ψ600 = 2.07+0.215×U1.7
10 is the piston velocity of SF6 normalised to a Schmidt number of 600 (subjected to the wind

speed U10 at 10 m from the ground, which is considered as zero in the model), Sc* represents the Schmidt number of the gas

under consideration, and n = - 1/2. See Wania et al. (2010) for details.
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As mentioned above the diffusion through the soil is affected by soil porosity, hence by the value of Fair(t,z). When Fair245

≤ 0.05 in soil layers the diffusivities in water are used. When Fair > 0.05, the diffusivities in air, which are four orders of

magnitude larger than those in water, become more significant. For soil layers where Fair ≤ 0.05, the diffusivities in water

are used. When Fair > 0.05, the diffusivities in air, which are four orders of magnitude larger than those in water, become

more important. Each day before diffusion is calculated, the gas flux J at the boundary is used to update the dissolved gas

content. The surface concentration Csurf of CH4 will mostly be greater than Ceq; hence J will be negative, denoting flux to250

the atmosphere, though it is possible for CH4 to diffuse into the soil in small amounts if the concentrations at the surface are

suitable. The resulting daily flux of CH4 is determined as the total CH4diff .

Ebullition

"Ebullition depends on the solubility of CH4 at a given temperature and pressure and occurs when the water table reaches the

surface during periods of high CH4 emission. Following Wania et al. (2010), in LPJ-GUESS, the best-fitted curve is represented255

as;

SB = 0.05708− 0.001545T + 0.00002069T 2 (14)

where SB is the Bunsen solubility coefficient, i.e. the volume of gas dissolved per volume of liquid at atmospheric pressure

and a given temperature (Wania et al., 2010).

The CH4 in each layer is converted to a maximum allowable dissolved mass, and this limit is used to separate the CH4 in260

the form of dissolved and gaseous components. If there is any CH4 that exceeds the maximum solubility of a layer, it will be

released into the atmosphere. The CH4ebul is calculated by adding this ebullition fluxes from all layers.

Plant-mediated transport

Plant-mediated transport of CH4 occurs via the aerenchyma (the gas-filled tissues) of vascular plants either through concentra-

tion gradient or active pumping from soil to the atmosphere. Only the passive mechanism (through concentration gradient) is265

considered in the model as it is the most dominant one (Cronk and Fennessy, 2016). Abundance, biomass, phenology and the

rooting depth of aerenchymatous plants are considered to calculate this. Only the flood-tolerant C3 graminoid is considered for

plant-mediated gas transport in the model (Table 2); hence plant-mediated transport of O2 and CH4 can only occur when C3

graminoids are present in a simulated patch.

The transport depends on the cross-sectional area of plant tillers1 in each soil layer, assuming that a significantly high270

percentage of CH4 is oxidized in the highly oxic zone near the roots, where methanotrophs flourish, before they enter into the

plants tissue.

The mass of their tiller is calculated as,
1Tiller refers to all the secondary shoots produced by grasses (Poaceae or Gramineae). Each tiller stem is segmented with its own two-part leaf.
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mtiller = bgraminoid×P (leaf) (15)

where bgraminoid is the leaf biomass of graminoids, and ’P’ represents the daily phenology, which is the fraction of potential275

leaf cover that has reached full development. To calculate number of tillers (ntiller) total weight of tillers, mtiller, is devdied

by the average weight of an individual tiller (wtiller). The cross-sectional area of tillers, Atiller then can be obtained by,

Atiller = ntiller ×ϕtiller ×πr2tiller (16)

where rtiller is the tiller radius and ϕtiller is the tiller porosity. Based on the optimisation of McGuire et al. (2012), Tang et al.

(2015) and Zhang et al. (2013) the value of rtiller is estimated as 0.0035 m and based on the Wania et al. (2010), the values280

of ϕtiller and Wtiller are estimated as as 70% and 0.22 gC/tiller respectively. Each soil layer is allocated a fraction of the

total cross-sectional area of tillers based on the root fraction estimated in that layer. The CH4plant is estimated by adding the

plant-mediated CH4 fluxes from all layers.

2.4 Parameters selected for optimisation

Parameter values related to the processes of CH4 emission in LPJ-GUESS are mostly adopted from the parameter values285

described in Wania et al. (2010). Since Wania et al. (2010) had difficulties finding the optimal parameter values for many of

the parameters, they performed some preliminary analysis for seven uncertain parameters, for which there were little or no

data available. They performed a simple initial sensitivity test by taking four sets of values for each of the seven parameters,

followed by a parameter fitting exercise with three sets of values for every seven parameters. They ran the model with all their

2187 different combinations for seven sites for one year. As a result, they got a Root-mean-square error (RMSE) range between290

226.4 and 18.3 (mg CH4 m
−2 d−1 ) for the different sites, which clearly indicates loosely fitted parameters with a high degree

of uncertainty.

In this study, parameters for the optimisation are selected based on their sensitivity to the model output (CH4) and expert

opinion. We used a simple method to calculate the percentage difference in output (single simulation) when varying only one

input parameter at a time from its permitted minimum value to its maximum (Hoffman and Miller (1983); Bauer and Hamby295

(1991)). The ’sensitivity index’ (SI) is calculated using the equation,

SI =
Dmax−Dmin

Dmax
(17)

where Dmin and Dmax represent the model output values corresponding to the minima and maxima of the corresponding

parameter range.

300

We considered five of the seven parameters Wania et al. (2010) tested in their sensitivity analysis (two parameters related
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Figure 2. Selected parameters for the optimisation and their SI values. The red and blue colours indicate the increase and decrease in total

CH4 flux, respectively, when the value of the parameter increases.

to the root exudate decomposition are not used in LPJ-GUESS) together with six other parameters used in LPJ-GUESS based

on their high SI values (Figure 2, Table 3).

Among the selected parameters Rmoist and Rmoistanaerobic, the response of soil organic matter decomposition to the

soil moisture content in acrotelm and catotelm conditions respectively (Equation 8); CH4/CO2 the CH4 to CO2 ratio in the305

anaerobic conditions (Equation 10); fair, the fraction of air in peat (Section 2.3.1 and Equation 10); poracro and porcato the

porosity in acrotelm and catotelm respectively (Section 2.2.1); λroot, the decay length of root biomass in peat (Equation 9) are

the parameters related to the CH4 production. The foxid, fraction of available O2 used for CH4 oxidation, (Section 2.3.2) is the

parameter related to the CH4 oxidation. wtiller, the average weight of an individual tiller; rtiller, the tiller radius and ϕtiller the

tiller porosity (Equation 16) are the parameters related to the CH4 transportation.310

2.5 Parameter optimisation framework

After selecting the parameters to be optimized and the physical possible range of values for each parameter, we assumed

Gaussian probability density functions (PDF) to depict both the prior distributions of the parameters and the deviation between

model and observations. The resulting model can be formulated as,

Y |x∼N(M(x),R),315

x∼N(xp,B), (18)

where Y are the observations, M(x) is the LPJ-GUESS output given parameters x, xp is the prior values of the parameters,

and R and B are error covariance matrices describing the uncertainty in observations and priors, respectively.

The prior uncertainties, B, are based on expert opinion and were kept relatively large to reduce the prior’s influence on the

posterior parameter estimates. We have assumed prior variance for each parameters as 40% of their expected range, see Table320
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Table 3. Selected parameters for the assimilation related to the CH4 flux from LPJ-GUESS. Prior values, prior standard deviation (std), units,

and description used for the prior distribution are given.

Number Parameter Prior value Prior std Unit Description

1. Rmoist 0.4 0.396 - Moisture response in acrotelm

2. CH4/CO2 0.085 0.236 - Anaerobic CH4 to CO2 ratio

3. foxid 0.5 0.36 - Litter CO2 fraction

4. ϕtiller 70 36 % Tiller porosity in percentage

5. rtiller 0.0035 0.004 m Tiller radius in meter

6. fair 0 4 % Fraction of air in peat

7. poracro 0.98 0.06 - Porosity in catotelm

8. porcato 0.92 0.076 - Porosity in enters slow soil carbon pool

9. Rmoistan∗ 0.025 0.04 - Moisture response in catotelm

10. wtiller 0.22 0.24 gC Tiller weight in gram carbon

11. λroot 25.17 12 cm Decay length of root biomass in centimeter

3. The parameters are also assumed to be a prior uncorrelated, due to lack of good and consistent expert opinions regarding

dependence.

2.5.1 Cost Function

Using the Bayesian framework the posterior for the parameters becomes

P (x|Y ) =
P (Y |x)p(x)

p(Y )
∝ P (Y |x)p(x), (19)325

which in log-scale results in the quadratic loss function as (Tarantola, 1987)

logP (x|Y ) =−J(x) + const.

J(x) =
1
2
(Y −M(x))tR−1(Y −M(x)) +

1
2
(x−xp)tB−1(x−xp) (20)

where const. represents normalising constants not depending on the unknown parameters. The two terms in J(x) represent

data-model misfit and the prior information on the parameters. A number of experiments aim to achieve the smallest cost

function values to locate the optimal parameter set within the parameter space.330

2.5.2 Adaptive Metropolis-Hastings

To search for the optimal posterior parameters, we used a MCMC-MH algorithm (Metropolis et al. (1953a); Hastings (1970a)).

The algorithm generates samples from a target distribution by, in each iteration, drawing from a proposal distribution and then

either accepting the new state or copying the old state. The resulting sequence of states will represent dependent samples from

the target distribution.335
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Tuning the proposal distribution is important for obtaining an efficient sampling from the target distribution. A badly tuned

MH algorithm will result in poor or incomplete convergence of the sequence and slow mixing, i.e. the sequence will take very

long to produce samples from the correct distribution. Manual tuning of the proposal distribution is often time-consuming

and prone to errors, especially for complex non-linear models, such as LPJ-GUESS, which can be sensitive to initial values

and have complex posterior distributions with multiple local minima. Instead we used an adaptive scheme where the MCMC340

MH automatically learns features of the target distribution (Andrieu and Thoms (2008), Roberts and Rosenthal (2009)). We

call the resulting framework the Global Rao-Black-wellised Adaptive Metropolis (G-RB AM) algorithm, since it combines the

Rao-Black-wellised Adaptive Metropolis algorithm with the Global Adaptive Scaling Metropolis algorithm, both described in

Andrieu and Thoms (2008). See Supplement S1 for technical details.

2.6 Experiment design345

Twin experiment

A simple twin experiment is designed to assess the performance of the developed G-RB AM and its ability to recover the

parameter values. The daily CH4 output simulated by the LPJ-GUESS using randomly chosen true parameter values (Ztrue)

within their permitted range of variation are used as the synthetic observation. Since the synthesized observation conforms

completely to the model, any potential errors in the model or uncertainties in observations have not influenced the parameter350

optimization process, ensuring unbiased posteriors. It is expected that the assimilated parameters converge to the Ztrue values

when the MCMC chain progress in time. To freely recover the Ztrue values, the prior parameter value (xp) in the cost function

(Equation 20) is set as Ztrue. Two scenarios are considered for the twin experiment to test the identifiability of the parameters

under different conditions. Scenario 1 with a shorter temporal scale from 2005 to 2014 (10 years); scenario 2 with a longer

temporal scale from 1901 to 2015 (115 years). Scenario 1 is more realistic and is chosen to mimic the real data at Siikaneva,355

whereas scenario 2 constitutes an ideal, hypothetical case with observations over the entire simulation period. Four sets of

chains for both scenarios with a chain length of 100,000 iterations are analysed. In each set of the scenarios, the optimisation

started from a different initial point in parameter space randomly selected from their prescribed ranges.

Real Data experiment

To estimate the posterior parameter values, an experiment with a chain length of 100,000 iterations using the real observation360

from Siikaneva is designed. The observed daily averages are compared with the model simulation in the cost function only when

more than 90% of the hourly observation were available each day. When there are gaps in the daily observation, we eliminate

them, and their corresponding modelled values from the cost function calculation. In principle the error covariance matrix

R should include both observation uncertainties and their correlations. From the fact that the latter is difficult to estimate,

we neglected them, and the observation uncertainties are estimated as 30% for the daily observations greater than 0.01 gC365

m−2d−1, and a floor value of 0.3 for the observations less than 0.01 gC m−2d−1.
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2.7 Parameter value estimation

For all the experiments conducted in this study, the first 75% of the G-RB AM chains are discarded as the ’burn-in’. The

PDFs generated after the ’burn-in’ are used to estimate each parameter’s maximum a posteriori probability (MAP), posterior

mean and standard deviation (std). Following the idea used in Braswell et al. (2005) the parameter distributions are grouped370

into three categories: ’well-constrained’, ’poorly constrained’, and ’edge-hitting’ parameters. The well-constrained parameters

are the ones that exhibit a well-defined uni-modal distribution, with low std. The poorly constrained parameters are the ones

that exhibit a relatively flat multi-modal distribution with large std. To be more precise with the estimation, for the posterior

parameter distributions appeared multi-model if the std of the distribution is greater than 20% of its total range, we classified

them as poorly constrained. The edge-hitting parameters are the ones that cluster near one of the edges of their prior range375

(Braswell et al., 2005).

2.8 Posterior re-sampling experiment

To examine the effect of parameter optimisation on flux components, we designed a re-sampling experiment from the posterior

parameter distributions. From the experiment conducted using site observation, 1000 sets of parameters are randomly selected

and used to run the model to simulate the CH4 flux components. The outputs from each simulation of the experiment are used380

to analyse the process correlations and process-parameter relationships.

3 Results

3.1 Twin experiment using G-RB AM

The trace-plot resulted from the four different twin experiments of scenario 1 is illustrated in Figure S2:1 (see supplemental

information). The result of scenario 2 is not shown, as it also followed the same pattern. The Figure shows the convergence of385

each chain to the Ztrue values regardless of their chosen initial values. The result shows a good convergence of all parameters

except the CH4/CO2 and λroot. Posterior parameter correlations of the experiment 1 shown in Figure S2:1 are given in S2:2.

Among the poorly retrieved parameters six of them except ϕtiller are observed as weak positively correlated to each others. The

ϕtiller showed a weak negative correlation to Rmoist but positive correlation to all the other poorly retrieved parameters. The

resulting PDFs of the experiment 1 after the ’burn-in’ are represented in Figure 3. This figure shows the mean and MAP values390

as well as the std of the parameters; their numerical values are given in Table 4. In general twin experiments have resulted

in ‘well-constrained’ and ‘poorly constrained’ parameter classes. Examples of the different classes of the distributions for the

experiment 1 of scenario 1 are shown in Figure 3. Based on the posterior distributions estimated from all the four G-RB AM

chains the parameters Rmoist , CH4/CO2, foxid, rtiller, fair, poracro, porcato and λroot are well constrained in scenario

1 and the parameters Rmoist , CH4/CO2, foxid, rtiller, fair, poracro, porcato, wtiller and λroot are well constrained in395

scenario 2 (Table 4).
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Figure 3. An example of probability density functions (PDFs) from the twin experiment, after the ’burn-in’. Prior and posterior distributions

are illustrated with black and green solid lines respectively. True parameter values (Ztrue), prior mean, posterior mean and maximum a

posteriori probability (MAP) are shown in red, black, lime and orange colors respectively. Parameter behavior: Rmoist, CH4/CO2, foxid,

rtiller , fair , poracro, wtiller and λroot are well constrained (WC); ϕtiller , porcato and Rmoistana are poorly-constrained (PC).

The parameter retrieval capacity of the G-RB AM algorithm is estimated as the ’retrieval score’ by dividing the posterior

mean estimates of the parameters from all the chains in each scenario by Ztrue parameter values. The idea behind the retrieval

score is that in an ideal case of complete recovery, the posterior parameter estimate and the Ztrue value are the same; hence the

retrieval score would be one. Figure 4 shows the retrieval scores obtained for each parameter and their 1 σ value. In scenario400

1 the ϕtiller, poracro, porcato, wtiller and λroot are well retrieved with a low std. Scenario 2 performed better in parameter

retrieval compared to scenario 1, in which the majority of the parameters except the CH4/CO2, rtiller, wtiller and λroot were

showing good retrieval scores, but with comparatively high stds (see Figure 4). The overall mean retrieval score estimation is

based on the ratio of the estimated and true values, given a value of 0.95 with a std of 0.19 for scenario 1, and a value of 1 with

std 0.21 for scenario 2 (see Figure 4), which is again an indication for the good performance of the G-RB AM.405

The reduced posterior cost function values and their χ2 values are given in Table 5. Here the reduced χ2 values are calculated

by dividing twice the cost function by the number of observations used in the assimilation. Overall the χ2 values indicate a

statistical robust cost function reduction given the prescribed uncertainties. The comparatively smaller values of χ2 for sets

1 and 3 in scenario 1 and set 3 in scenario 2 indicates a tendency to over fitting the results and being overconfident in the
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Table 4. Means, standard deviations (std) and maximum a posteriori probability (MAP) of retrieved parameters for selected twin experiments

in both scenarios and the parameter classes estimated from analysing the distributions of all four chains. The parameter classes include well-

converged (WC) and poorly-converged (PC) parameters.

Parameter

Rmoist CH4/CO2 foxid ϕtiller rtiller fair poracro porcato Rmoistana wtiller λroot

Sc 1

Ztrue 0.30 0.1 0.40 0.60 0.005 0.10 0.95 0.90 0.05 0.30 18.0

MAP 0.42 0.086 0.31 0.63 0.006 0.094 0.93 0.89 0.051 0.32 17.4

Posterior mean 0.40 0.087 0.33 0.60 0.006 0.096 0.94 0.90 0.057 0.30 17.2

std∓ 0.16 0.002 0.07 0.16 0.001 0.003 0.004 0.02 0.02 0.10 0.70

Class WC WC WC PC WC WC WC WC PC PC WC

Sc 2

Ztrue 0.30 0.1 0.40 0.60 0.005 0.10 0.95 0.90 0.05 0.30 18.0

MAP 0.22 0.079 0.24 0.64 0.006 0.09 0.94 0.89 0.064 0.29 13.9

Posterior mean 0.28 0.08 0.26 0.63 0.006 0.10 0.95 0.89 0.053 0.26 14.1

std∓ 0.07 0.002 0.05 0.18 0.001 0.0008 0.0009 0.006 0.01 0.01 0.42

Class WC WC WC PC WC WC WC WC PC WC WC

Table 5. Cost function reduction observed from the G-RB AM twin experiments using two different scenarios (Sc). Prior and posterior cost

function values obtained from four sets of experiments for each scenario are given. The misfit of observed and expected (zero) cost function

values are represented as the reduced χ2 value.

Sc 1

Experiment Prior Posterior χ2

Set 1 12486.4 301.6 0.17

Set 2 49674.0 759.6 0.422

Set 3 29535.6 294.0 0.17

Set 4 8476.8 428.0 0.24

Sc 2

Set 1 86140.0 6170.0 0.31

Set 2 619172.0 8040.0 0.38

Set 3 68792.0 3372.4 0.16

Set 4 109888.0 8646.0 0.41

estimated posterior values and uncertainties.410

3.2 Real data experiments and optimised parameters

For the experiment with the real data, the observations collected at the Siikaneva wetland are assimilated using the G-RB AM

algorithm. The trace plots with 100,000 iterations obtained after the optimisation are exemplified in Figure 5.
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Figure 4. Twin experiments result in terms of mean retrieval score based on the ratio of the estimated and Ztrue values of the parameters.

The horizontal red lines indicate a complete retrieval, and the error bar shows the std from different chains in different scenarios.

3.2.1 Optimised parameter values and distributions415

The posterior parameter PDFs are shown in Figure 6. The shapes of the distributions are used to interpret the results of the

parameter optimisation as explained in Section 2.5. In contrast to the twin experiments, the parameters fell into three categories:

‘well-constrained’, ‘poorly constrained’, and ‘edge-hitting’; the classifications are given in Table 6. The PDFs for parameters

Rmoist, CH4/CO2, ϕtiller, fair, poracro, wtiller and λroot are classified as well constrained distributions. The PDFs for

rtiller, porcato and Rmoistanaerobic are classified as poorly constrained distributions, and the one for foxid is classified as a420

edge-hitting distribution. Both in the well-constrained and poorly constrained parameters, high kurtosis is observed. The values

of foxid, which is the edge-hitting parameter, lay near the higher bound of the edges of the prior range, and most of the retrieved

values were clustered near this edge. The parameter also exhibited large positive kurtosis and negative skewness. Apart from

their shapes, the MAP and the posterior mean estimates were also computed. The estimated posterior parameter values and

their 1σ stds along with the prior values are shown in Table 6. The MAP and posterior mean estimates of the parameter agree425

on the value for CH4/CO2, fair and poracro. For foxid, ϕtiller and rtiller, both the MAP and posterior mean estimates stayed

out of 1/3 of the 1σ range of the posterior distribution, which we consider a large difference, and for the remaining parameters,

the MAP and posterior mean estimates stayed within 1/3 of the 1σ of their posterior distribution; hence we consider this as a

small difference.

For the parameters Rmoist and CH4/CO2 the posterior values appeared very close to, but slightly below the prior values.430

The posterior values of Rmoistanaerobic appeared very close to, but slightly above the prior values. For the parameter ϕtiller
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Figure 5. An example of the G-RB AM chains for the experiment with real observations showing all the 10,000 values in the chain. The first

75 % was discarded as ’burn-in’ and is greyed out in the figures. The remaining 25% (from the red vertical lines) is used for the analyses.

the MAP estimate appeared very close to but above the prior value and posterior mean estimate appeared very close to but

below the prior value. For these four parameters, the posterior mean stayed within 1/3 of the 1σ range of the assumed prior

uncertainty. The parameters foxid, rtiller, and fair posterior values appeared slightly above the prior values, but out of the 1/3

of the 1σ range of the prior uncertainty. The prior and posterior values of the parameter poracro remained the same. In contrast,435

parameters porcato, wtiller and λroot appeared far distant from, and below the prior values, out of 1/3 of the 1σ range of prior

uncertainty, but stayed within the prior range (see Section 4.2 for details).

3.2.2 Posterior parameter correlation

The 2D distributions of the posterior parameters and their Pearson correlations are illustrated in Figure 8. Overall, the majority

of the parameters showed weak positive or negative correlations with a few exceptions with extreme correlations (the values440

and corresponding colour code in the triangle above depict this). For exampleRmistanaerobic showed high negative correlation

to Rmoist and poracro showed high positive correlation to the fair. The 2D marginal distributions (scatter plots), illustrated in

the lower triangle, showed a general tendency of high clustering within the 1σ range for all the parameters; in general, the 1D
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histograms (on the diagonal, also shown in Figure 6) appeared as well-constrained uni-modal distributions. For further details,

see Section 4.3.1.445

3.2.3 Cost function reduction

The prior parameter values and cost function value, as well as the posterior parameter values and cost function values corre-

sponding to both posterior MAP and mean estimates are listed in Table 6. The prior cost function value calculated with the

default model parameters showed a high-cost value of 48424.4 with a model overestimation of around four times the observed

flux. After the optimisation, the cost function value was reduced to 2959.8 with the MAP estimate of parameters and to 3002.6450

with the posterior mean estimate of parameters.

As anticipated, the cost function was marginally lower for the MAP estimate when compared to the posterior mean estimate,

resulting in a better model-data fit regarding the error model with the MAP estimate, which can be seen in Figure 9b. It can also

be observed from the Figure that the cost function reduction has not only fitted the total model sum to the total observational

sum but also has reduced the misfit between each year.455

3.2.4 Flux components of CH4 simulation and parameter values

To understand how and how much in magnitude each optimised parameter influences the flux components and the total flux,

the result of the ’re-sampling experiment’ (see Section 2.8) is examined by correlation and regression analyses. The Pearson

correlation coefficients and regression slopes are calculated for all the 1000 parameter sets and their corresponding total sums

of the flux components and total flux. The left side of Figure 7 shows a schematic summary of the correlation coefficients and460

regression slopes between the 11 parameters and the flux components including total flux. For the total flux, all parameters

except fro foxid and ϕtiller showed a similar regression pattern observed in the case of diffusion with slight differences in

magnitudes. This similarity is not surprising as diffusion is the most dominant process among the process components. The

total flux showed highest correlations to CH4/CO2 and λroot and lowest correlation to foxid. A detailed discussion of the

process-parameter relations can be found in Section 4.3.2.465

The right side of Figure 7 shows the correlations between the sums of flux components resulted from the ’re-sampling

experiment’. The 2D distributions in the lower triangle show a strong positive relation between diffusion and total flux. Almost

all the parameter residuals are observed within the 3σ deviation without many outliers. Except for the correlation between

diffusion and total flux, the analysis showed no other strong positive or negative correlation between the components, as can

be seen in the correlation plot illustrated in the top triangle.470
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Figure 6. PDFs of parameters from G-RB AM real data experiment after the ’burn-in’. The green curves shown are the smoothed Gaussian

kernel estimates of the posterior distribution on the posterior histograms, and the black curves are the prior distributions. The dotted vertical

green and black lines are the posterior and prior means, respectively. The shaded green area of the distributions represents the 1 σ error

estimate of the PDFs.

Yearly variations in fractional contributions of flux components simulated using prior and posterior parameter estimates are

examined to understand the impact of the optimisation on the composition of the inter-annual emissions. The time series of the

annual sums of flux components as a function of their total flux (in percentage) are shown in Figure 9a. The result shows that

among the flux components, diffusion contributes the most to the total CH4 flux both in prior and posterior estimates, with a

slightly higher contribution in the posterior estimate, followed by plant-mediated transport. But in the case of the prior estimate,475

the diffusion contributed comparatively less for the first two and the last years compared to the remaining years. In contrast

to this, the contribution of plant-mediated transport was high for these first two and last years. The observed contribution of

diffusion is very low in the case of the posterior (see Section 4.3.4 for a more detailed discussion).

The time series model-observation mismatch of prior and posterior estimates for the annual total fluxes can be seen in Figure

9b; the values are in percentage of the observed CH4 flux. The prior estimate showed a mismatch of around 600% for the first480

two years. Also, a considerably high mismatch is observed in the years 2011, 2012 and 2014. The MAP estimate remained

near zero, while the posterior mean estimate exhibited a slightly negative values indicating an underestimation of the flux.
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Table 6. Parameter values obtained after the G-RB AM real data optimisation. The prior values, maximum a posteriori (MAP), posterior

mean, std and parameter classes are shown. The parameter classes include well-converged (WC) and poorly-converged (PC), and edge-hitting

(EH) parameters. The cost function values correspond to the parameter values obtained with prior, MAP and posterior mean estimates are

also shown.

Parameter

Rmoist CH4/CO2 foxid ϕtiller rtiller fair poracro porcato Rmoistan wtiller λroot Cost value

Prior values 0.4 0.085 0.5 0.7 0.0035 0.0 0.98 0.92 0.025 0.22 25.17 48424

MAP 0.37 0.055 0.98 0.74 0.0087 0.032 0.98 0.87 0.029 0.0061 10.47 2959.8

Posterior mean 0.39 0.055 0.96 0.68 0.0079 0.032 0.98 0.88 0.033 0.0082 10.58 3002.6

std ∓ 0.15 0.0046 0.046 0.17 0.0011 0.007 0.008 0.038 0.016 0.0037 0.45

Class WC WC EH WC PC WC WC PC PC WC WC

Interestingly, the MAP followed the same pattern as the prior estimation by showing an increase whenever the prior increased

and a decrease whenever the prior decreased; however, the posterior mean estimate did not show this relation.

The fraction of the annual errors of the flux components of the total flux (in %) is shown in Figure 10. The effect of opti-485

misation on the individual contributions of each component can be seen from the annual means (solid dots) of their fractional

contribution to the total flux. The error bars represent the 1σ stds from the mean values. Among the prior estimates of flux

components, the prior plant-mediated transport showed the largest error (22.5%), and the ebullition showed the smallest error

(9.1%). In the MAP estimate, ebullition showed the highest error with a value of 12.3%, followed by diffusion and ebullition

with around the same value of error, 6.9% and 6.8%, respectively. For the estimate using posterior mean values, diffusion and490

plant-mediated transport showed around the same errors, 7.5% and 7.4%, and the ebullition showed the least error (2.6%). On

the right-hand side of the figure, the fourth column displays the mean and errors for the inter-annual variation of the total fluxes

obtained by prior parameter values and posterior estimates. The prior total estimate showed an error of 4.2%, and the mean and

MAP showed an error of 0.66% and 0.72%, respectively.

3.3 Fit to the observation495

Figure 9b illustrates the percentage model-data misfit, and Figure 11 shows the time series of the assimilated observations

together with the model prior and posterior estimates with their uncertainties. As expected, the posterior estimate fitted the

observations better than the prior estimate. The total RMSE estimated between the prior and observations were 0.044 gC

m−2 d−1, which got reduced to a value of 0.023 gC m−2 d−1 for the posterior case. The result indicates that most of the

mismatch between the prior model estimates and observations was contributed by the large overestimation in the initial years.500
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Figure 7. Schematic summery of the ’re-sampling experiment’. The image on the left side shows the process-parameter correlation and

regression slope. Three different flux components of CH4 together with the total flux are labelled on the vertical axis, and the parameters

are labelled on the horizontal axis. The different colours of the circles represent the regression slopes scaled between -1 and 1 (in 11 steps).

The blue colour indicates a steeper negative slope hence a strong decrease, and the red colour indicates steeper positive slopes hence a

strong increase in CH4 fluxes with the increasing parameter value. The correlation coefficient (R2) scaled between 0.05 and 1 (in 11 steps)

is represented by the size of the circles, with larger circles indicating higher (R2) values. The image on on the right side shows the process-

process correlations. Numeric labels on the upper triangle correspond to Pearson’s correlation coefficient values. The diagonal of the matrix

shows the 1-D histogram for each flux components and the total flux. 2-D marginal distributions of the sum of the processes and total flux

are represented in the lower triangle with contours to indicate 1σ, 2σ and 3σ confidence levels. The points in the plots indicates the sums of

flux components (black dots). Ranges of the distributions are labelled on the left and bottom of the figure.

This overestimation disappeared in the posterior, showing a better agreement with the observation. There are years for which

the observations show large peaks during the summer (such as 2010, 2013 and 2014), and the posterior estimates succeeded in

capturing these peaks to a large extent, see Section 4.6 for details.

4 Discussion

4.1 Twin experiment505

A common problem with the adaptive MH algorithm is its inability to widely explore the target distribution if the set-up is

not well tuned. This can then result in a poor approximation of the target distribution, hence poor adaptation. The resulting

trace plots shown in Figure 5 and Figure S2:1 (see supplemental information) depict a set of well-explored parameters on their

permitted space ranges during the progression of the random walk, which indicates a well-tuned assimilation framework. The

use of the Blackwellised learning (as explained above) of the posterior distribution appeared beneficial during the transients510
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Figure 8. A posteriori correlations between the parameters from the G-RB AM real data optimisation. The blue and red colour in the upper

triangle represents the strong negative and positive correlations, respectively. The numerical labels on the upper triangle are the values of

Pearson’s correlation coefficient. The panels on the diagonal show the 1-D histogram for each model parameter with a dashed red vertical

line to indicate the best-fit value. The vertical blue lines are the 0.16, 0.5 and 0.84 quantiles of the distributions, respectively. On top of each

1D histogram, the mode of the distribution and the interval of the 0.16 and 0.84 quantiles are indicated. The lower triangle represents the

two-dimensional marginal distributions of each parameter with contours to indicate 1σ, 2σ and 3σ confidence levels, and the points in the

plots are the values of G-RB AM chain after the ’burn-in’ (blue dots). Ranges of the distributions are labelled on the left and bottom of the

figure.
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Figure 9. Flux component fractions and percentage model-data difference. Figure (a) shows the proportions of annual flux components

plotted as a function of the total yearly flux. The different flux estimates are represented in solid lines of different colours, and the symbols on

them correspond to each flux component. Figure (b) shows the annual model–observation mismatch in percentage with respect to the yearly

total CH4 observation

.

of the chains whenever the acceptance probability has been dropped to low values at low probability regions of the parameter

space.

Figures 4 and Figure S2:1 show almost complete convergence of some parameters to Ztrue regardless of the scenarios.

Given the complexity and non-linearity of the model, it is not surprising that not all parameters converged completely. It

is also not surprising that different chains estimated slightly different posterior solutions for the parameters. However, most515

poorly retrieved parameters still have their true values within the 1 σ range of the Gaussian PDFs of the optimized values. The

analysis of the cost function reduction (Table 5), the ability to constrain the parameters (Figure 3), and the parameter retrieval

ability (Figure 4) of the twin experiments showed that the developed G-RB AM algorithm is capable of optimizing the process
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Figure 10. The first three columns of the figure show the fractions of the annual fluxes from process components of the total fluxes. The

vertical solid lines represent the 1σ error bars of each component, and the dots represent the mean of the annual fluxes. The fourth column

(correspond to y axis on the right side) shows the annual mean and annual errors for the inter-annual variation of the total fluxes.

Figure 11. Total CH4 simulation from the LPJ-GUESS model (red dots) after optimising with the G-RB AM algorithm. The black dots are

the real CH4 observations from Siikaneva with prior observation error (grey shade). The light red shade around the posterior model simulation

is the 95% confidence interval (CI) of the simulations. The blue dots are the prior simulation with the prior default model parameters. A few

outliers above 0.3 gCm−2 on the vertical axis have been removed from the figure for better visualisation. While most of the observations

fall within the confidence intervals, it’s important to note that the effects of parameter variations in the posterior are part of these confidence

intervals.
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parameters related to CH4 emissions in LPJ-GUESS. The results from the eight experiments conducted assuming observations

from two different scenarios indicate the capability of the algorithm for parameter retrieval regardless of the initial guesses and520

temporal scales used. The resulting posterior PDF distributions, characterized as uni-modal distributions, illustrate the ability

of the developed framework to solve the multi-dimensional problem of reducing a complex cost function based on a highly

non-linear model.

4.2 Parameter estimation using real observations

As described in Section 3.2.1 the experiment using real data resulted three poorly constrained and one edge-hitting parameter.525

The poorly constrained or edge-hitting parameters, however, are not uncommon in MH parameter search and rather expected

with a complex and highly non-linear model such as LPJ-GUESS. The correlation of parameters to other parameters can affect

the result; i.e. the number of parameters that can optimised within this data assimilation framework is limited. Though the

twin experiments showed good parameter retrieval and non-equifinality, assimilating the complex real-world observations into

a complex ecosystem model like LPJ-GUESS is expected to have parameter retrieval and equifinality problems. This is one530

of the reasons for selecting a small subset of the parameters associated with wetland CH4 flux simulations for this study. As

described in Section 3.2.1 considerable changes have occurred to the prior parameter values after optimisation. Here it should

be considered that, in general, while optimising the parameters, the assimilation is trying to reduce the CH4 flux to minimise

the misfit with the observed data, which is around half of the prior model estimate (see Table 7).

The very slight reduction, i.e. within 1/3 of the 1σ error in the posterior mean estimate ofRmoist indicates a slight decrease535

of the moisture response in aerobic conditions, hence a slightly reduced CH4 emission. Unlike Rmoist, the posterior mean

estimate forRmoistanaerobic got a higher value compared to the prior value, with a slight asymmetric multi-modal distribution.

The higher posterior value of Rmoistanaerobic indicates the production of CH4 in the anaerobic conditions of the catotelm.

The CH4/CO2 parameter, which is the CH4 to CO2 ratio in an anaerobic environment, was found to be lower as compared

to the prior. This indicates a high fraction of CO2 production from the peat compared to CH4 production. The prior parameter540

value for fair was zero, which means there is no ’permanent’ gas fraction in peat. After the optimisation, the posterior value for

fair was slightly positive (0.032), indicating a small air fraction in the peat. The high value of foxid and fair which indicates

a high available air fraction and/hence O2 concentration in the soil to convert the available carbon into CO2 respectively, could

explain this reduction in CH4/CO2 as a balancing effect (Equation 10).

Among the CH4 transport-related parameters, a slight reduction was observed in the posterior mean estimate of ϕtiller, which545

indicates slightly more compact tillers with less porosity to transport the CH4. A considerable reduction, more than 1/3 of the

prior uncertainty, is observed in wtiller, which indicates low leaf biomass. A decrease in the fraction of potential leaf cover

would lead to a reduction in the amount of carbon added to the ’potential carbon pool’ for methanogens, which will cause low

CH4 emission. Contradictory to the values of the two above-mentioned CH4 transport-related parameters, rtiller, which is the

tiller radius of plants, showed a value of more than twice the prior value, means more tillers for a given biomass, i.e. ntiller550

increases, which means Atiller increases, thus an increase in CH4 emission (see Equation 16). Here it should be considered

that the optimisation of plant related parameters depends on the plant species present in the wetland.
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The posterior value for the porosity at the catotelm (porcato) was observed considerably below the prior, indicating a more

compact catotelm with less water (as we assume it is saturated). Change in water content will affect soil temperature slightly.

This could have a dual effect for CH4 such that it either increases the flux if the temperature increases in anaerobic condition,555

or decreases the flux due to compact peat. As described in Section 3.2.1, the poracro remained unchanged; hence no changes

in acrotelm porosity occurred. The positive kurtosis observed in the PDF of this parameter indicates a well constrained single

solution, and the negative skewness indicates a more probabilistic region below the posterior estimate.

The posterior value for λroot is estimated to be much smaller than the prior (more than 1/3 of 1σ of the prior estimate). This

small posterior value for λroot indicates a low decay length of root biomass in the soil, means more of the decomposition and560

CH4 production occurs in the acrotelm, and less in the catotelm. The emission of CH4 produced mainly by peat decomposition

in the acrotelm would be facilitated by a low posterior value for λroot, with around 60% in the first layer of acrotelm followed

by 22% and 8% in the second and third layers of acrotelm.

4.3 Posterior correlation estimates

This study conducted a detailed analysis of posterior parameter-parameter correlations, parameter-process correlation, and565

process-process correlation. The detailed discussion is given below.

4.3.1 Posterior parameter-parameter correlations

Figure 8 provides an overview of the posterior parameter characteristics. The following discussion distinguishes between

strong (> 0.5) and weak (< 0.2) parameter correlations. A strong negative correlation is observed between Rmoist and

Rmoistanaerobic. The posterior estimate of the parameter values also shows an opposite tendency in these parameters (Table570

6), indicating reduced CH4 production in acrotelm and increased CH4 production in catotelm. The parameter CH4/CO2 is

negatively correlated to the parameters Rmoistanaerobic, and to λroot. This indicates a reduction in CH4 fraction produced by

decomposition in deep soil. Increase in tiller weight would add more organic carbon to the soil, which will result in a more

compact peat accumulation in the bottom layers of soil with less porosity. This might be the reason for the negative correlation

between wtiller and porcato. poracro showed a very high positive correlation to fair, which can simply be explained as more575

porous soil allows for more air in the soil. wtiller showed a strong positive correlation with ϕtiller and rtiller indicating an

overall positive correlation among the parameters related to the plant-mediated transport. All the other parameters showed

rather weak positive or negative correlations.

4.3.2 Posterior parameter-process correlation

As described in Section 2.2, the total CH4 flux simulated by LPJ-GUESS is calculated by summing up the component fluxes580

from diffusion, ebullition and plant-mediated transport. The following discusses (based on the Figure 7 ) the interactions

between the optimised process parameters and the component fluxes.
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Moisture response, Rmoist and Rmoistan

If larger the value of Rmoist, it would likely results in a faster soil carbon turnover time, which makes more carbon available

for CH4 production, hence a slight increase in emission. The weak positive correlation and regression slope of Rmoist with585

all the flux components could be due to this enhanced turnover time. Rmoistanaerobic had a positive effect on diffusion and a

negative effect on plant-mediated transport. The positive effect is because of the same reason of enhanced carbon turnover time,

but the negative effect is due to the low plant root abundance in saturated catotelm. Increase in Rmoistanaerobic contributed

very less to the ebullition. This is most likely because of the negligible contribution of ebullition to the overall flux, having zero

contribution for most of the time.590

Methane/carbon dioxide ratio, CH4/CO2

The very high positive correlation and regression slope of theCH4/CO2 parameter with diffusion and plant-mediated transport

(which are the two diffusive pathways) indicates that a large part of the total emission of CH4 are through these pathways.

Higher the value of CH4/CO2, the more carbon is channelled into the CH4 pool. Especially the plants with a larger tiller

radius after the optimisation are able to transport more CH4 when there is more dissolved CH4 available in the soil. The595

increase in ebullition is marginally less (smaller circle) than the other fluxes, most likely because ebullition is limited by the

availability of gaseous CH4, produced when the solubility reaches the maximum. However, the dissolved CH4 is first emitted

via diffusive fluxes; hence, there is very little CH4 left in the gaseous phase for ebullition.

Oxidation fraction, foxid

The fraction of available oxygen utilized for CH4 oxidation is determined by the parameter foxid. It showed a negative cor-600

relation to diffusion and ebullition and a slight positive correlation to plant-mediated transport. A decrease in diffusion and

ebullition can be explained by a greater fraction of available oxygen used for CH4 oxidation leading to less CH4 emitted via

ebullition. Significant decrease occurs in diffusion since the diffusive flux cannot circumvent the top layer, into which oxygen

diffuses. Direct explanation of the increase in plant-mediated transport is hard due to the complex process formulation in the

model, but, it should be noted that the aerenchymas could transport a part of the oxygen deep down to the soil layers where it605

plays less of a role in oxidation, but contributes more to the total gas pressure, which can escalate the passive plant mediated

transport to the atmosphere.

Transport, ϕtiller, rtiller and wtiller

As mentioned before the parameters ϕtiller, rtiller and wtiller are positively correlated to each others. They are also positively

correlated (with a positive slope) to plant-mediated transport. These parameters could have two effects on the emissions: Having610

aerenchyma cells with more porous space, radius and biomass, on the one hand, enhances the CH4 transport to the atmosphere,

but on the other hand, through the same spacious aerenchyma cells, it is also possible for plants to transport more O2 to the
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soil. This enhanced O2 transport to the soil could be the reason for the slight reduction in diffusion and ebullition observed in

the cases of ϕtiller and wtiller.

Fraction of air and porosity, fair, poracro and porcato615

The slightly positive posterior value fair increased all the flux components with a comparatively larger effect on diffusion. As

stated above, the diffusivity of CH4 in air is four orders of magnitude larger than that in water, indicating fast and easy transport

of CH4 to the atmosphere. The slight increase in diffusion could be the direct influence of fair as this parameter is the main

controlling parameter of this component flux in the model.

Similar to fair, the poracro also had a posterior value that increased the fluxes from all components but with a rather low620

correlation. The reason for this is, as explained above, that a larger parameter value means a higher amount of air in the

soil and hence more ebullition. In contrast, the porcato slightly reduced the ebullition. This could be because more water can

potentially occupy the pores of permanently saturated catotelm which will indirectly affect ebullition through phase change

and by affecting on soil temperature.

Decay length, λroot625

λroot played a key role in this optimisation. Figure 7 showed that λroot has a strong negative regression slope to diffusion and a

weak positive regression slope to plant-mediated transport. The value got reduced considerably (higher than the value reported

in Wania et al. (2010) and in Susiluoto et al. (2018)) after the optimisation and resulting in a much shallower soil profile

for most of the root decay. As most of the peat decomposition activities are assumed to happen in acrotelm the reduction in

the magnitude of λroot facilitated diffusion, especially as it is the largest component. On the other hand, the plant-mediated630

transport got reduced due to the reduction in the root depth controlling parameter λroot.

4.3.3 Posterior flux components

In Figure 12, the time series of process components are shown for the posterior mean estimate. In general, the optimisation

of the model parameters leads to around 50% decrease in the production of CH4 compared to the prior, with a considerable

reduction in plant-mediated and ebullition components, leaving diffusion as the dominant component. Diffusion reduced by635

around 30% and the plant-mediated transport reduces around 86 %. The low contribution of plant transport is mainly due to the

low value of the root depth controlling parameter λroot, which got reduced from 25.17 to a value of 10.58. This lower proportion

of the plant-mediated transport is however surprising for a fen wetland site like Siikaneva with the greater aerenchymous leaf

area throughout the growing season. The result is contradictory to the results obtained from optimising the model sqHIMMELI

(Susiluoto et al., 2018), in which the largest fraction of CH4 is contributed by the plant-mediated transport. However, from640

the field experiments conducted at Siikaneva to estimate the plant-mediated transport, Korrensalo et al. (2022) has observed a

smaller proportion of the ecosystem scale CH4 efflux attributable to plant CH4 transport in the Siikaneva fen site, which is well

in agreement with the result we observed.
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Figure 12. Time series for diffusion, ebullition, and plant transport using parameter values from the posterior mean estimate. The figure

illustrates the changes in ebullition and plant-mediated transport following the optimization. A few outliers above 0.08 gCm−2 on the

vertical axis have been removed from the figure for the better visualisation.

The largest reduction, however, was for ebullition by around 92%. This result is not surprising since Wania et al. (2010),

who provide the basic foundation of the CH4 model in LPJ-GUESS, also reported almost virtually no ebullition to the surface645

at several sites. Figure 12 shows that during the years 2008, 2010 and 2012, there is no ebullition estimated. Here, it should

also be considered that the representation of ebullition in LPJ-GUESS is somewhat simplified as it is represented by a curve

fitting equation for calculating the solubility, and the ideal gas law is applied to convert the volume of CH4 per volume of water

into the corresponding number of moles. Due to this lack of detail and its fast timescale occurrence (mostly depends on the

physical parameters such as temperature and pressure) and with no relevant parameters in the control vector, the optimisation650

could not alter the ebullition component directly. But on the other hand, the ebullition is indirectly controlled by parameters

related to CH4 production and transport when there is high saturated CH4 available in the soil water, and thus the optimisation

can change the ebullition component indirectly. The overall total of the observed CH4 flux from Siikaneva during the period

of 2005 to 2014 was 56.0 gCm−2, and the prior estimate of the model was 98.5 gCm−2 (Table 7). After the optimisation,

with the posterior mean estimate of parameter values, the model estimated flux of 53.5 gCm−2 with an estimated posterior655

uncertainty of ∓ 4.82. This shows a reduced model-data error after optimisation with a difference of only 2.5 gCm−2.

4.3.4 Posterior process-process correlation

After the optimisation, the air fraction in the peat got increased, which is likely the cause of the enhanced diffusion. Diffusion

is estimated in the model based on the soil porosity and water, temperate and air fractions in the soil. Correlating the diffusion

to the ebullition showed a negative result, i. e. illustrating the dominance of diffusion over ebullition under more air in peat (see660

Figure 7b). A larger air fraction in the soil can also lead to an increase in plant-mediated emissions as the passive diffusion of air

through the plant tissues depends on the amount of air in the soil/peat water (see Section 2.3.3). This can be seen in Figure 7b
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Table 7. Total emission from flux components estimated from MAP posterior mean and prior parameter values for the optimisation time

period. The unit is in gCm−2.

Component MAP Posterior mean Prior Observation

Diffusion 49.5 49.6 70.7

Ebullition 0.15 0.28 4.1

Plant-mediated 3.5 3.7 23.6

Total 53 53.5 98.5 56.0

as a comparatively high correlation between diffusion and plant-mediated transport. The increased tiller radius rtiller in plants

increases the Atiller value (Equation 16), and hence also favours faster diffusion through the aerenchyma cells. Ebullition is

positively correlated to plant-mediated transport, indicating the occurrence of both these components when there is a high665

concentration of CH4 in the soil. This occurs when the water table is located close to the surface and when there are more

graminoids. An increase in plant-mediated transport of gases to the soil increases the net pressure imposed by the gases in

soil/peat water, which likely leads to increased ebullition.

4.4 Model error and fit to the observation

The annual mean errors for the prior parameter values, MAP, and posterior mean values are shown in Figure 10 as one std.670

Except for ebullition, all the prior process components exhibited larger variances of the annual errors compared to the posterior

estimates. The plant-mediated transport is the component with the largest error in the prior estimate. The posterior error

estimates for this component showed nearly equal values with a slightly higher value for the posterior mean estimate. A similar

pattern can also be seen for diffusion. In contrast to this, the MAP error estimate for ebullition showed a higher value compared

to the posterior mean error but interestingly also to the prior. The posterior mean error estimate for ebullition showed the lowest675

value.

The annual flux components mentioned above are illustrated in Figure 9a. It is clear from this figure that the prior process

components had large inter-annual variance, especially for the first three years and last year. Considerable reduction in variance

is observed for both the MAP and posterior mean estimates. The reduction of the variance observed in posterior estimates is

not proportional to the prior, but still, the posterior estimates showed comparatively high variance in the first and last years.680

In Figure 9b (as described in Section 3.2.4) the posterior mean estimate shows a comparatively high variance (w.r.t the MAP

estimate) of the annual errors with a negative bias throughout the time period. In contrast to this, the MAP estimate showed

a positive bias throughout the time period. Compared to the posterior mean estimate, the MAP estimate has considerably

larger parameter values for the ϕtiller and rtiller which could possibly be interpreted as slightly more CH4 emission through

the increased tillers of plants, hence the reason for the positive bias of the MAP estimate. Figure 10 also indicates a high685

percentage of annual plant-mediated emissions for the MAP estimate. The negative bias of the posterior mean estimate could
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be due to the additional wintertime emission from the real-world wetlands, which is not captured in the model. In the model,

the emissions start around early summer, once the soil is not frozen anymore. In addition, the large daily variability in the

observations of the summertime fluxes is also not represented in the model. Overall the posterior estimates of the annual

fluxes are in good agreement with the observations leading to a small model-data mismatch for both MAP and posterior mean690

estimates.

4.5 Model inputs and uncertainty

After the optimisation, the model result showed a small underestimation of the cumulative emission between 2005-2014 around

2.5 gCm−2. One reason for this mismatch could be the daily variations in the input climate data. The model is unable to repre-

sent peak emissions caused by the micro-environmental changes. As mentioned in Wania et al. (2010), the flux components are695

complex processes that depend on changes in many environmental factors. For instance, ebullition (one of the more complex

CH4 emissions processes in LPJ-GUESS as shown in previous sections) depends on volumetric content of wind and various

gases. and hydrostatic and atmospheric pressure, but the model is not using them as forcing. Ebullition is also affected by

the concentration of CH4 and the density of nucleation sites, which are difficult to represent in the model. Apart from these

potential bias contributors, the CENTURY soil scheme and soil temperature and hydrology calculations used in the model700

also contributes to the uncertainty in the model predictions. Given these caveats, the small negative biases obtained for the

posterior mean estimates when compared with the observation (see Figure 9 b) are reasonable when considering the quality

and uncertainty of the input data used (see Section 2.1).

4.6 Optimised simulation from LPJ-GUESS

A detailed time series distribution of prior and posterior model simulations plotted against the observation is shown in Figure705

11. The posterior model predictions were adjusted by the optimisation to capture the observation with considerable adjustment

to the summer peaks. For example, the large peaks in the modelled emissions in 2005 and 2006, which largely contributed

to the prior cost function, disappeared in the posterior emissions. In the following years, 2007 and 2008, the prior model

simulations underestimated the observation, which also got corrected in the posterior. Also, the posterior emissions largely

capture the comparatively high peaks in the observations for the years 2010 and 2012, though the model still underestimated the710

observation. In 2013, the observations were high and the optimisation failed to capture this peak; rather, it tried to compensate

for the underestimation by releasing a sudden high spike at the end of the summer that year. In winter months, the model

simulated zero fluxes (as discussed before), whereas, the observations showed a small emission (around 8.3 % of the assimilated

total), often with some small spikes possibly from the ebullition. This inability of the model to capture the wintertime emission

has contributed to the posterior model uncertainty and model data misfit.715

As discussed in Section 4.3.4, the contribution of ebullition to the posterior estimate is comparatively negligible. Compared

to the posterior, there were many emissions spikes observed in the prior estimate, especially during the beginning and the end

of the summer months. Apart from these spikes the prior CH4 estimates during the summer were a bit low in most of the years.

The posterior estimate has considerably reduced these high spikes and adjusted the summer peaks to match the observation

34

https://doi.org/10.5194/gmd-2022-302
Preprint. Discussion started: 19 April 2023
c© Author(s) 2023. CC BY 4.0 License.



better. On the other hand, while compromising with the summer peaks in the observation, the optimized parameter often failed720

to capture the abrupt high fluxes in the daily observation and simulated them at slightly wrong times. The spike shown at the

end of 2013 is an example of such a mis-timing. This is likely to be caused by errors in the meteorological input data and

missing wind and pressure.

It can be seen from the Figure 11 that the majority of the observations lie within the 95 % confidence interval of the posterior

estimate. Often the observation uncertainty overlaps the confidence interval except for the summer peak times of 2010, 2012725

and 2013, in which the observation showed strong peaks compared to the average values. The few outliers in the observations

are not captured by the model; these could likely be measurement artefacts and/or due to environmental forcing not considered

here, again such as wind speed or air pressure.

5 Conclusions

This study marks the initial effort to optimize the model process parameters controlling the simulation of wetland CH4 fluxes730

within the LPJ-GUESS model using the Rao-Blackwellised adaptive MCMC technique based on Bayesian statistics. The

assimilation framework has been shown to be able to retrieve correct parameter values by performing a set of twin experiments.

Furthermore, we used eddy-covariance flux measurement data from a boreal wetland to calibrate the LPJ-GUESS model

parameters for a site-specific simulation. The results demonstrated that the fit to the observation of the CH4 simulation of a

complex terrestrial DGVM like LPJ-GUESS can be systematically enhanced with a Bayesian parameter calibration. The results735

also showed that the modelled processes and the estimated parameters were well constrained by the observations leading to a

substantial reduction in the posterior uncertainty of the simulated CH4 emissions. The results of the re-sampling experiment

indicated that there were no redundant processes in the model description, as shown by the parameter and process correlations.

The robustness of the assimilation framework developed in this study calls for further application of the framework using

observations from multiple sites in a simultaneous assimilation. Further validation of the framework’s performance is neces-740

sary to confirm its applicability to other sites with diverse plant functional types and climatic conditions. The relatively strong

roughness in the shape of the cost function observed in this study is expected to be reduced in a multi-site assimilation experi-

ment, as has been observed by Kuppel et al. (2012), which would allow the retrieval of the global minimum of the cost function

more easily. These further applications are beyond the scope of this paper and will be investigated in future studies.
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